Gradient Free Parameter Estimation for Hidden Markov Models with Intractable Likelihoods
نویسندگان
چکیده
منابع مشابه
Parameter Estimation for Hidden Markov Models with Intractable Likelihoods
Approximate Bayesian computation (ABC) is a popular technique for approximating likelihoods and is often used in parameter estimation when the likelihood functions are analytically intractable. Although the use of ABC is widespread in many fields, there has been little investigation of the theoretical properties of the resulting estimators. In this paper we give a theoretical analysis of the as...
متن کاملParameter estimation in pair hidden Markov models
This paper deals with parameter estimation in pair hidden Markov models (pairHMMs). We first provide a rigorous formalism for these models and discuss possible definitions of likelihoods. The model being biologically motivated, some restrictions with respect to the full parameter space naturally occur. Existence of two different Information divergence rates is established and divergence propert...
متن کاملInformation Geometry Approach to Parameter Estimation in Hidden Markov Models
We consider the estimation of hidden Markovian process by using information geometry with respect to transition matrices. We consider the case when we use only the histogram of k-memory data. Firstly, we focus on a partial observation model with Markovian process and we show that the asymptotic estimation error of this model is given as the inverse of projective Fisher information of transition...
متن کاملMaximum-likelihood estimation for hidden Markov models
Hidden Markov models assume a sequence of random variables to be conditionally independent given a sequence of state variables which forms a Markov chain. Maximum-likelihood estimation for these models can be performed using the EM algorithm. In this paper the consistency of a sequence of maximum-likelihood estimators is proved. Also, the conclusion of the Shannon-McMillan-Breiman theorem on en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Methodology and Computing in Applied Probability
سال: 2013
ISSN: 1387-5841,1573-7713
DOI: 10.1007/s11009-013-9357-4